Geometry of universal magnification invariants

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sphere geometry and invariants

A finite abstract simplicial complex G defines two finite simple graphs: the Barycentric refinement G1, connecting two simplices if one is a subset of the other and the connection graph G′, connecting two simplices if they intersect. We prove that the Poincaré-Hopf value i(x) = 1−χ(S(x)), where χ(S(x)) is the Euler characteristics of the unit sphere S(x) of a vertex x in G1, agrees with the Gre...

متن کامل

The Symplectic Camel and Quantum Universal Invariants: the Angel of Geometry versus the Demon of Algebra

A positive de…nite symmetric matrix quali…es as a quantum mechanical covariance matrix if and only if + 12 i~ 0 where is the standard symplectic matrix. This well-known condition is a strong version of the uncertainty principle, which can be reinterpreted in terms of the topological notion of symplectic capacity, closely related to Gromov’s non-squeezing theorem. We show that a recent re…nement...

متن کامل

Bottom tangles and universal invariants

A bottom tangle is a tangle in a cube consisting only of arc components, each of which has the two endpoints on the bottom line of the cube, placed next to each other. We introduce a subcategory B of the category of framed, oriented tangles, which acts on the set of bottom tangles. We give a finite set of generators of B , which provides an especially convenient way to generate all the bottom t...

متن کامل

Tail Recursion Through Universal Invariants

Tail recursive constructions suggest a new semantics for datatypes, which allows a direct match between speciications and tail recursive programs. The semantics focusses on loops, their xpoints, invariants and convergence. Convergent models of the natural numbers and lists are examined in detail, and, under very mild conditions, are shown to be equivalent to the corresponding initial algebra mo...

متن کامل

Enumerative geometry and knot invariants

We review the string/gauge theory duality relating Chern-Simons theory and topological strings on noncompact Calabi-Yau manifolds, as well as its mathematical implications for knot invariants and enumerative geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2009

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.3204970